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A b&act 

Expanding graphs and superconccntrators are relevant to theoreti- 

cal computer science in several ways. Here WC use finite geometries 

to construct explicitly highly expanding graphs with essentially the 

smallest -possible number of edges. 

Our graphs enable us to improve significantly previous results 

on a parallel sorting problem, by descrilbing an explicit algorithm 

to sort n elements in k time units using O(nPk) processors, where, 

e.g., ap = 7/4. 

Using our graphs we can also construct efficient n-superconcen- 

trators of limited depth. For example, we construct an n supercon- 

centrator of depth 3 with O(n4j3) edges; better than the previous 

known results. 

I. Introduction 

A graph G is called (n, o, @-expanding, where 0 < a<P<n, 

if it is a bipartite graph on the sets of vertices I (inputs) and 0 

(outputs), where ]I) = 101 = n, and every set or at least Q inputs 

is joined by edges to at least p dilTcrent outputs. 

Expanding graphs with a small number of edges, which are 

the subject of an extensive literature, are relevant to theoretical 

computer science in several ways. Mere wc merely point out two 

examples. A family of linear expanders of density k and expansion 

d is a set {C,}~==, of graphs, where G, has ~(k+o(l))n edges and 

is (n,o, o(1 + d(1 - o/n)))-expanding for all oAn/2, where d > 0 

and k are fixed. Such a family is the basic building block used 

in the constructions of graphs with special connectivity properties 

and small number of edges (see, e.g., Chung 1121). An example of 

a graph of this type is an n-superconcentrator, which is a directed 

*Rrscarrh aupportcd in party by the Wcizmnnrn Wlowship for 6cienlific Re- 
search 

acyclic graph with n inputs and n outputs such that for every 

l<r<n and every two sets A of I inputs and D of T outputs there 

are t vertex disjoing paths from the vertices or A to the vertices 

of R. Superconcentrators have been used in the construction of 

graphs that are hard to pebble (see Lengauer and Tarjan (221, 

Pippenger (271 and Paul, Tarjan and Celoni (?9]), in the study of 

lower bounds (see Valiant [34]), and in the establishment of time 

space tradeoffs for computing various functions (Abelson [t], Ja’Ja’ 

(201 and Tompa [32]). 

A family of linear expanders is also essential in the recent paral- 

lel sorting network of Ajtai, Komlds and Szemer&di 121. 

It is not too dillicult to prove the existence of a family of 

linear rxpanders using probabilistic arguments (see, e.g., Chung 

[ 121, f’inkscr [25] and I’ippengcr [ZS]). Ilowcvcr, for applications 

an rxplicit con;;truction is desirable. Such a construction is Tar 

more ditlicult and was first given in Ma&is (231 and modified in 

Cabber and Gnlil [14]. (See also hlon and Milman [41, 151 for a 

more general construction.) 

The expanding graphs used in 1141 to construct superconcen- 

trators and those used in the sorting network of ]2] are @,a,@- 

expanding ror some fixed (indcpcndcnt of n) ratio of a/a, i.e., they 

are rather weakly expanding. For some applications, however, a 

higher amount of expansion is necessry and (IL, o(n), P(n))-expanding 

graphs are needed, where p(n)/o(n) ++ 00 as n I-+ oo. A pas- 

sible (and essentially the only known) nrcthod to obtain (explicitly) 

highly expanding graphs with a small number or edges is an “iteration” 

of the known expander or 1141 (set Pippenger (281). Unfortunately, 

this method is a poor substitute ror the probabilistic construction 

since it supplies graphs with too many edges. This makes some of 

the applications impossible. 
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Here we use finite geometries to explicitly construct highly ex- 

panding graphs with essentially the smallest ,possible number of 

edges. Specifically, we show that the points versus hyperplanes in- 

cidence graph of a finite geometry of dimension d is an (n, z, n - 

n’+‘l’/z)-expanding graph, for all 0 < z < n. AB pointed out 

by Pippengcr [28], the results of Guy and Znam [IS] imply that 

any such graph must have at least n(n2-‘id) edges. Our graphs 

have (1 + 0(1))3-” edges; only a constant times the theoretical 

lower bound. The previous methods were not sufficient to construct 

graphs with this amount of expansion having o(n*) edges. 

By,a thcorcm of Singer [lS], the edges of our graphs can be 

defined by a set of NN n ‘-‘Id translations modulo n, in contrast 

to the result of Klawc [21] that asserts that no family of linear 

expanders can bavc this form. this rcvcals a diflcrcnce between 

weakly expanding and highly expanding graphs. 

Our new expanding graphs enable us lo obtain an explicit algo- 

rithm for sorbing n elements in two time units using O(n’/‘) paral- 

lel processors. this improves results of Bollob& and Roscnl’eld [lo], 

Hiiggvist and Hell [18] and Pippenger 1281 who gave explicit algo- 

rithms to this problem using 2/5n* + O(n3/*), 13/30(nz - n) and 

O(n’.Q43,*.(~ogn)0.043*..) p rocese&., respectively. It also enables us 

to improve the best known algorithms for sorting n elements in k 

time units, for all (fixed) k24. Very recently Pippenger has found 

a slightly better way of using our expanding graphs to get an ex- 

plicit algorithm for sorting n elements in two time units using only 

O(nz’/‘5) parallel processors. 

Using our graphs we also construct explicitly n-auperconcen- 

trators or depth 3 with O(n’ls) edges - better than those having 

O(ns/‘) edges obtained from the results or Slcpian and Duguid 

(cl’ 17, pp. 86-881) and Mcshulam [24]. This also enables one to 

construct better explicit superconcentrators of depth 2r + 1 for all 

llxed r21. 

Our paper is organized as follows: in Section 2 we construct 

our geometric expanders. In Section 3 we describe bow they can 

be applied to the problem of sorting in rounds and in Section 4 we 

discuss briefly superconcentrators of limited depth. 

Our expanders also enable us to construct several graphs relevant 

to Ramsey Theory and obtain a strengthened version of the well 

known deBruijn-Erdgs Theorem [S]. This will appear in another 

paper 13). 

2. The geometric expanders 

Let d,q22 be intcgcrs. Let I and 0 bc, respectively, the sets 

of points and hypctplancs ol’ a 6niLr geometry of dimension d and 

order q. As is well known, such a gcomctry always exists if q is 

a prime power 1161. Let G = C(q,d) denote the bipartite graph 

with classes of vertices I and 0 in which p E I is joined to h E 

0 iff p is incident with h. When q is a prime power G has the 

following easy explicit construction. Let V be the set of all non- 

zero vectors of length d+ 1 over the Unite &Id GF(q). Two vectors 

z = (21, . ..) zd+l) and ji = (91 , . . ..yd+l) are equivalent ifT Zi = Cyi 

for some c E CF(q) and 1 <i Ad + 1. Let ? denote the set of 

all equivalence classes of V under this relation. Put I = 0 = v. 

Two VCrtiCCB [(zl, 22, . . . . Zd+l)] E I and [(l/l, YZ, . . . . yd+l)] E 0 are 

joined iff CfL: Ziyi = 0. The next theorem shows that C(q, d) is a 

highly expanding graph. 

Theorem 2.1 

Put n = (qd+’ - l)/(q - l), k = (qd - I)/(q - l), x = (qd-’ - 

W(q - 1). 

1. G = G(q,d) is B-regular and If] = 101 = n; thus G has 

(1 f 4))n *-‘id edges. (AB q I-+ oo for fixed d.) Every two distinct 

vertices of 0 have precisely X common neighbors in I. 

2. If X C f, 1x1 = z then (N(X)l>n - n’+*jd/z. Thus C is 

( n, 2, n - n’+‘jd/z)-expanding for all 0 < 2 < n. 

3. If 2 c 0 then 

]{i E I :]N(i)nZ] < ~]Z(/nl~d}l <4n1+‘/d/(Z(. 

Proof 

Part 1 of the above theorem is well known (and easy - see, e.g., 

[16]). Parts 2 and 3 (and in fact even slightly stronger assertions) 

can bc proved using a relation, similar to the one proved in 1311 or 

in [4], bctwecn tbc eigenvalues of the adjacency matrix of a graph 

and its expansion properties. Ilere we present an easier proof that 

uses linear algebra and a certain “second moment” method. Put 

G-c(q,d)=(I,O;E).ForiE~,oEOputci,=g-IifioEE 

and ciO = -1 if io eE. Suppose X C I,Z G 0 then 

f2C{o,ot)cz&fCie * Ci# = (Z((k ’ (4 - l)* + fl - k) t 

+]z(((Z] - l)(X(q - 1)’ - 2(k - X)(q - 1) + n - 2k + X) = 
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= JzJ(qd+’ -q + 1) - lzl(lal- I)(q ‘- 1)<12( * n’+lld. 

To prove 2, apply the last inequality to X and Z = 0 - N(X). 

(Note. that for i E X C,,ezcio = -lZl’,. To prove 3, apply the last 

inequality to X = {i E I: (N(i)nZ] < $Z[/TL”~} and Z. (Note 

that here for i E X &,eac;,,~ - ]Z]/2). 1 

Remarks 

1. The known results about the distribution of primes (see, e.g., 

113, p. xx]) clearly imply that for every fixed d22 and every integer 

n there exists a prime p such that nl(pd+’ - l)/(p - l)In + 

O(n1-11(3dl). Any z inputs in any induced subgraph of G(p,d) 

with n inputs and TI outputs have >n - (1 -to(l))* neighbors. 

Thus we have for every d22, an explicit construction of a family 

of graphs {Mn, 4EL where H(n,d) has (1 + o(l))n*-‘ld edges 

and is (n, z,n - (1 + o(l))n’+‘/‘/z)-expanding for all 0 < z < n. 

2. by using the results of 115) on the problem of Zarenkiewica one 

can easily show that any graph that has the expansion properties 

ofC(q, d) must have at least (1 t 0(l))~In2~tr~-~~~ edges. Note that 

the number oi’ edges of C(q,d) (or of J!(n,d)) is (1 + o(l)). ns-l/d 

and thus these graphs have (up to a constant of l/!nZ) the smallest 

possible number of edges. 

3. Let PG(d, q) be the finite geometry of dimension d over the field 

CF(q) and let C(q, d) be the corresponding expander. Let n, k be as 

in Theorem 2.1. Ily Singer’s Theorem ([16]) there exist OLal C 

02 < *.. < Ok < n such that C(q, d) is isomorphic to the bipartite 

graph with classes of vertices A = D = (0, 1,2, . . . . n - 1) in which 

a E A is joined to b E l? i6 b = (a+oi)(mod n) for some Isilk. 

This contrasts with the result of [21] that implies that no family 

of linear expanders can have this form and thus shows a difference 

between highly expanding and weakly expanding graphs. 

3. Sorting in rounds. 

Suppose we are given n elements with a linear order unknown 

to us. In the first round we ask ml simultaneous questions, each a 

binary comparison. Raving the answers we deduce all implications 

and ask, in the next round, another ms questions, deduce their 

implications, and so on. A choice of our questions that guarantees 

that after t rounds we will know the complete order of the ele- 

ments is an algorithm for sorting in r rounds. The need for such 

aigorithms with fixed T arises in structural modeling (see H;iggvist 

and Hell [IS]). Since all comparisons within a round are evaluated 

simultaneously, such algoorithms have obvious connection to paral- 

lel sorting, as defined by Valiant 1331, and seem to be practical 

in situations like testing consumer preferences (see Scheele [SO]), 

where the communication between our sorting computer and the 

consumers is being performed by correspondence. Many rceulta 

about sorting, in rounds can be found in the survey article IQ]. 

Let /r(n) denote the minimum possible number of comparisons 

sufficient to sort n elements in 7 rounds. Clearly, /t(n) = (;I. 

In Gggvist and Hell [17,18] and Bollobis and Thomason Ill], 

probabilistic arguments are used to obtain estimates of f,(n) for 

722. In particular it is known that js(n) = O(n3/’ logn) and 

{2(n) = R(n3/*) (see Ill]). F or practical applications, however, 

a probabilistic argument is not enough and an explicit sorting 

algorithm is desirable. Hiiggvist and Ilcll observed this fact and 

in [IS] they gave explicit algorithms i’or sorting in k rounds with 

o(n’k) comparisons, where 8k I+ 1 as k t-+ co and, e.g., sa = 

E/5, ad = 20113, and 8s = 28/19. It seems more difficult to 

find an eihcient sorting algorithm in two rounds. In 118) such an 

algorithm with 13/30(ns - n) comparisons is given. A somewhat 

better algorithm is given in Bollob.& and Roscnfeld [lo] - with 

2/5n2 + O(n3/*) comparisons. The only construction with o(na) 

comparisons is due to Pippcnger [28] - O(n1.943...(logn)o~g43...). 

In some situations it may be undesirable to allow deducing all 

iinplications, since condusions derived from relations themselves 

derived by transitivity may be unreliable. Thus one may be willing 

to allow only direct implications (i.e., if we find in the first round 

that z < y, v < z and .a < t WC conclude that z < z and y < t 

but not necessarily that z < t). In [ll] a lower bound of R(s5/3) 

is proved for such an algorithm in 2 rounds. Using our geometric 

expanders we obtain: 

Theorem 3.1 

By an explicit construction that uses only direct implications 

/2(n) = O(n’l’). 

Note that by the lower bound mentioned above our construction is 

not fare from being best possible. 

Proof. 

Let A be the set of n objects we have to sort. Clearly we may 

assume that n is of the form (q5 - l)/(q- 1) for some prime power 

q (otherwise, add o(n) dummy objects to obtain an R or this form). 

Let C = C(q, 4) be a gcomctric expander corresponding to a finite 

geometry of dimension 4 and order q. Let I = {ut,ira, . . . . u,,) 

and 0 = {ui,us,..., u,} be the sets ol inputs and outputs of 0, 
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rcspcctivcly. In the first round wc compare lhr i-t.h clc~rnrnl of A 

ln lhc j-th clcmcnl ir ViUj is an cdgc of G. There nre O(n7/4) such 

comparisons. 

We proceed to show that even by deducing only direct implica- 

tions, we will have lo compare in the second round only O(n’l’) 

pairs. For X c A put N(X) = {y E A : y is compared in the first 

round to some z E X}. The following two Ihcts follow directly 

from Theorem 2.1. 

Fact 1. 

If Z c A, ]Z] = (4 + O(l))n3/’ and 

x = {z E A : IN(~) n ZI Inq 

lhcn ]Xl<(l + o(l))n’lz. 

Feet 2. 

If Y c A, ]Y] > n’/* then IN(Y)]>n - n3/‘. 

Define a partition of II into ! = [~‘/‘/I] blocks of Al,...,Al, 

each of size (4+0(l))&‘, such that each Ai consists of consecutive 

objects (in the linear order we have to find) and the maximal 

element of Ai is smaller than the minimal element of Ai+,. Cal1 an 

clement a E Ai+! bud if ]N(~)fiAi]<~‘/*~ otherwise call it good. 

By Fact 1 the number of bad elcmcnta in Ai+, is ~(1 + o(l))n’/*. 

Let o E A;+* be good and suppose b E lJi.2, J$. If 

then, by direct implication from the first round, b < u. Ilowcvcr, 

pqn)nnil > d/2 , and thus, by Pact 2 the nurnbcr of bs that 

violate (3.1) is 171 ‘/’ It follows lhal the total number of com- . 

parisons of an clrmcnl a E /Ii+, lo clrrncnlti in Uf~, Aj left ror 

the second round is bourdrtl by n (or courtic) if a is brul and by 

IAil+lAi+II+n”’ = (S+o(l))n ‘1’ if n is good. The lotnl number 

of thcsc comparisons is thus bounded by 

P. (1 + n( l))n”’ . n + n(9 + o(1))n3” = O(n’/‘). 

Since the first round also requires O(n’l’) comparisons, the total 

number of comparisons is O(n’/‘). u 

Very rcccnlly Pippcnger has shown that by using indirect im- 

plications of arbitrary length, the number of comparisons can be 

reduced to U(nzs/15 ). The first round of his algorithm uses our 

cxpnndcrs arising from Iinilc gcomclrics of dimension 3. 

Our new results, logcthcr with the recursive construction of 

Il;iggvist nnd llcll 119, theorem 31, cnablc us to improve the best 

known cxplicil algorithm for sorting in k rounds for all (fixed) k)4. 

4. Superconcentrators of limit& depth. 

Recall lhc definition of an n-superconcentrator (= s.c.) given 

in Scclion 1. ‘I% depth or an S.C. is the number of cdgrs in the 

longest directed path from an input to an output. The size of 

an S.C. is lhc number or its edges. It is well known that s.c.‘s of 

lincnr size exist (see 1261, [34]), and in 1141 an explicit construction 

of an n-s.c. with size % 271.8n is given. This was improved in 

151 to % 158n. I-lowevcr, the minimal possible size of an R-S.C. of 

dcplh T is not linear with n, Tar all fixed 721. This was shown by 

Dolev, Dwork, I’ippengcr and Wigdcrson [13] and, independently, 

by Ajtai. Mcshularn [2/l] constructed explicitly an n-s.c. of depth 

2 and size O(# ). The rcsulls of S&an, Duguid and LcCorre 

(cf [7, pp. 86-88)) supply an explicit n-s.c. of depth 3 and size 

O(n312). (This is also obtained, of course, by 1241.) Our geometric 

expanders cnablc us lo prove; 

Theorem 4.1. 

I)y an explicit construction there is an n-S.C. or depth 3 and 

size O(n’/3). 

Thr method described in 17, pp. 136-1441 cnablcs one to use 

l’hcorern 4.1 for cxplicil constructions of n-s.c.‘s or depth 2t + 1 

and size O(n(‘+3)‘(‘+2)) i’or all lixcd r>l; better than the previous 

known results. Wc omit lhc dclailcd constructions. 
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